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One-Dimensional Relativistic Dissipative System
with Constant Force and its Quantization
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For a relativistic particle under a constant force and a linear velocity dissipation force,
a constant of motion is found. Problems are shown for getting the Hamiltonian of this
system. Thus, the quantization of this system is carried out through the constant of
motion and using the quantization on the velocity variable. The dissipative relativistic
quantum bouncer is outlined within this quantization approach.
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1. INTRODUCTION

It is known that dynamical systems with dissipation (dissipative systems)
represent some difficulties for their right formulation in terms of Lagrangian and
Hamiltonian formalisms (López, 1996). Normally this dissipation is included in
the dynamical equations in a phenomenological way and through a force which
depends on the velocity of the particle. If the Hamiltonian of a dissipative system
is found, one proceeds to try to quantize the system. This has been able to do for
several nonrelativistic systems (Okubo, 1981; Glauber and Man’ko, 1984; Mija-
tovic et al., 1985; López and González, 2005), but little is know about relativistic
dissipative systems. The special theory of relativity, constructed by Poincarè,
Lorentz and Einstein at the beginig of the 20th century, is based on conservative
systems, despite its enormous success during the last century (Cho, 2005), one
may also be interested in the possible changes on the usual dynamical variables
(energy or linear momentum, for example) when dissipation is taken into con-
sideration in a relativistic dynamical system. In this work, a constant of motion
for a relativistic particle under a constant force and a linear dissipative force is
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Jalisco, México; e-mail: gulopez@udgserv.cencar.udg.mx, hhernandez@hotmail.com.

2 Facultad de Ciencias de la UNAM, Apartado postal 70–348, Coyoacán 04511 México; e-mail:
xamaneklopez@hotmail.com.

743
0020-7748/06/0400-0743/0 C© 2006 Springer Science+Business Media, Inc.
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obtained. The constant of motion at first order in the dissipation parameter and
the nonrelativistic limit of the constant of motion are analyzed, and the problems
for getting the Hamiltonian of the system are outlined. Finally, the quantization
for the relativistic dissipative system, at first order on the dissipation parameter, is
carried out through the quantization of the velocity and the constant of motion.

2. RELATIVISTIC CONSTANT OF MOTION

The one-dimensional motion of a particle of mass m at rest under a constant
force, f, and a linear dissipation force, −αv, is governed by the equation

d

dt

(
mv√

1 − v2/c2

)
= −(f + αv), (1)

where v is the velocity of the particle, α is the dissipation parameter, and c is
the speed of light. This equation can be written as the following autonomous
dynamical system

dx

dt
= v (2a)

dv

dt
= −f

m
(1 + βv)(1 − v2/c2)3/2, (2b)

where β is the constant defined as β = α/f . A constant of motion for this system is
a function K = K(x, v) which satisfies the following partial differential equation
of first order (López, 1999)

v
∂K

∂x
− f

m
(1 + βv)(1 − v2/c2)3/2 ∂K

∂v
= 0. (3)

The general solution of this equation is given by

Kβ(x, v) = G(A(v) + f x), (4)

where G is an arbitrary function, and A(v) has been defined as

A(v) = m

∫
v dv

(1 + βv)(1 − v2/c2)3/2
. (5)

The result of the integration of (5) is

A(v) =



(1 − βv)mc2

φ(v)
+ mβc3

(1 − β2c2)3/2
arc sin

βc + v/c

1 + βv
if βc < 1

mcv√
1 − v2/c2

+ mc2(1 − 2v/c − 2v2/c2)

3(1 + v/c)
√

1 − v2/c2
if βc = 1

(1 − βv)mc2

φ(v)
+ mβc3

(β2c2 − 1)3/2
log

ψ(v)

1 + βv
if βc > 1

(6)
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where the functions φ(v) and ψ(v) have been defined as

φ(v) =
√

1 − v2/c2(1 − β2c2) (7a)

and

ψ(v) = 2
(
c2β2 + βv +

√
1 − v2/c2

√
c2β2 − 1

)
. (7b)

The function G, appearing on (4), can be determinate through the criterion (López,
1996) of having the usual relativistic energy expression of the associated conser-
vative system for β equal to zero (i.e., the nondissipative case),

lim
β→0

Kβ(x, v) = mc2√
1 − v2/c2

+ f x, (8)

which brings about the result G = I (the identity function).3 Therefore, the con-
stant of motion for the system (2) can be chosen as

Kβ(x, v) = A(v) + f x. (9)

This constant of motion brings about the damping effect on the trajectories in
the phase space (x, v). Of course, due to multivalue functions of (6), the value of
the constant of motion changes for the trajectories going from the x > 0 side to the
x < 0 side of this space, in order to get the spiral falling down to the origin behavior
of the trajectories. So, one may say that (9) represents an “almost everywhere”
constant of motion of the system (2), in the sense that the set of points where these
changes do occur has zero measurement (Hewitt and Stromberg, 1965), one may
call it “local constant of motion.”

For weak dissipation, one can also make a Taylor expansion on (5) of the
term (1 + βv)−1 to get the constant of motion of the following form

Kβ(x, v) = mc2√
1 − v2/c2

− mβ

[
vc2√

1 − v2/c2
− c3 arcsin

v

c

]
+ f x + φ(v),

(10a)
where the function � is given by the expression

�(v) =
∞∑

n=2

(−1)nβn

[
− c2vn

(n − 1)
√

1 − v2/c2
+ nc2

n − 1

∫
vn−1dv

(1 − v2/c2)3/2

]
.

(10b)
Thus, at first order on the dissipation parameter β, one has

Kβ(x, v) = γmc2 − mβc3
[γ v

c
− arc sin

v

c

]
+ f x, (11a)

3 one could add to (8) the term −mc2 to have the usual energy expression for the nonrelativistic case.
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where γ has the usual expression,

γ = 1√
1 − v2/c2

. (11b)

Note that the nonrelativistic limit (v/c � 1) must not be taken from the case
cβ < 1 or the case cβ = 1 but rather from the case cβ > 1. In this way, subtracting
the term of energy at rest, mc2, on the case cβ > 1, the nonrelativistic constant of
motion is given by

Kβ(x, v) = m

β2

[
βv − log(1 + βv)

] + f x. (12)

Now, using the known expression (Kobussen, 1979; Leubner, 1981; López and
Hernández, 1989) to obtain the Lagrangian from the constant of motion,

L(x, v) = v

∫
K(x, v)dv

v2
, (13)

one can get the Lagrangian and generalized linear momentum (p = ∂L/∂v) given
by

Lβ(x, v) = B(v) − f x (14a)

and

p(v) = C(v), (14b)

where the functions B(v) and C(v) are given in the appendix. In particular, the
Lagrangian and the generalized linear momentum for a relativistic particle with
dissipation at first order in the dissipation parameter β as in (11a) are

L1(x, v) = −mc2

γ
− mβc3

[
v

2c
log

γ − 1

γ + 1
+ arcsin v

c

γ
+ v

c
log

v

c

]
− f x (15a)

and

p(v) = γmv + βmc2

[
−5

2
+ vγ

c
arcsin

v

c
− 3

2
log

v

c

]
. (15b)

Similarly, for the nonrelativistic case with dissipation as in (12), one has

L2(x, v) = m

β2
(βv − 1) log(1 + βv) , (16a)

and

p(v) = m

β

[
log(1 + βv) − 1 − βv

1 + βv

]
. (16b)

As one can see from (14b), (A2), (15b) and (16b), it is not possible to have the
inverse relation v = v(p). Therefore, their Hamiltonians are expressed only in
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an implicit way through the constants of motion (9), (12) and (11). Thus, the
quantization of the system (1) can not be carried out with the standard Shrüdinger
equation (Messiah, 1958),

ih̄
∂�

∂t
= Ĥ (̂x, p̂)�, (17a)

or Heisenberg equation,

ih̄
dξ̂

dt
= |̂ξ, Ĥ | + ih̄

∂ξ̂

∂t
, (17b)

where ξ̂ is any time depending observable. The Feynman path quantization
(Feynman and Hibbs, 1965) is, in principle, possible to use here since one has
gotten the Lagrangians (14a), (15a) and (16a). However, the analytical functions
appearing in these expression represent a real challenge for the quantization with
the path integration method. One must also note from relations (14a) and (15a)
that these can not be expressed in a covariant way since Lorentz transformations
do not leave invariant this dissipation system.

3. QUANTIZATION OF THE CONSTANT OF MOTION

We are interested here in the quantization of the system (1) at first order in
the dissipation parameter β, characterized by the constant of motion (11a). As it
was mentioned above, the quantization using the Hamiltonian or the Lagrangian
approaches does not look plausible due to the implicit form of the Hamiltonian
and the complicated expression for the Lagrangian. However, one can try to use
the idea of quantizing the velocity (López, 2000) through the obvious expression

v̂ = −i
h̄

m

∂

∂x
. (18)

In this way, one can use directly the constant of motion of our system to make its
quantization through the equivalent Schrödinger equation

ih̄
∂�

∂t
= K̂ (̂x, v̂)�, (19)

where K̂ is the Hermitian linear operator associated to the constant of motion K
and which has units of energy.

Thus, let us consider the constant of motion (11a). From (19) and (11a), the
equation obtained is given by

ih̄
∂�

∂t
=

{
mc2√

1 − v̂2/c2
− mβc3

[
v̂√

1 − v̂2/c2
− arcsin

v̂

c

]
+ f x

}
�. (20)
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Equation (20) represents an stationary problem, and the proposition

�(x, t) = ψ(x) exp

(
−i

E t

h̄

)
(21)

transforms (20) to an eigenvalue problem,{
mc2√

1 − v̂2/c2
− mβc3

[
v̂√

1 − v̂2/c2
− arcsin

v̂

c

]
+ f x

}
ψ = Eψ. (22)

One can see from this expression that it is better to look for its solution in the
velocity representation, which is given by applying the Fourier transformation to
the function ψ ,

φ(v) = F [ψ(x)] = 1√
2π

∫
R

eimvx/h̄ψ(x)dx, (23)

where the variable v represents the velocity of the particle. Applying this Fourier
transformation to (22), one gets{

1mc2√
1 − v2/c2

− mβc3

[
v√

1 − v2/c2
− arcsin

v

c

]
+ i

h̄f

m

∂

∂v

}
φ = Eφ. (24)

This equation has the following solution

φE(v) = 1

2vo

e
i m2c3

hf

[
arcsin v

c
−2βc

√
1− v2

c2 −βv arcsin v
c
− Ev

mc3

]
, (25)

where vo represent some maximum velocity of the particle (vo ≤ c), and [−vo, vo]
is the intervale of velocities where the normalization of the function (25) has been
carried out, ∫ vo

−vo

|φE(v)|2dv = 1. (26)

One also has that

〈φE|φE′ 〉 =
∫

φ∗
E(v)φE′(v)dv = h̄f

m
δ(E − E′). (27)

The spectrum of energies of the particle is continuous because of the form of the
potential, f x, and the general solution of (20) can be written, using (21) and (25),
as

�(v, t) =
∫

A(E)φE(v)e−iEt/hdE, (28)
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where the coefficient A(E) is determinate by the initial condition �(v, 0) in the
following way

A(E) = m

h̄f

∫
φ∗

E(v)�(v, 0)dv . (29)

Now, in the case the potential be of the form

V (x) =


f x if x > 0

∞ if ≤ 0
(30)

which would correspond to the one-dimensional dissipative relativistic bouncer
problem, one requires that ψ(0) = 0 and ψ(x) = 0 if x < 0 for the solution of
(22). This condition brings about the discrete spectrum of the system and can be
written in the velocity representation, using the inverse Fourier transformation, in
the following way

0 = ψ(0) = F−1[φE(v)]

∣∣∣∣
x=0

= 1√
2π

∫
φE(v)dv . (31)

Given the set of eigenvalues, {En}, the eigenfunctions are given by

φn(v) = 1√
2vo

e
i m2c3

h̄f

[
arcsin v

c
−2βc

√
1− v2

c2 −βv arcsin v
c
− Env

mc3

]
, (32)

and the general solution can be written as

�(v, t)
∑

n

An�n(v)e−iEnt/h, (33)

where, using the orthogonality 〈φn|φn′ 〉 = δn.n′ the coefficients A′
ns are determinate

by the initial condition �(v, 0) and through the following expression

An =
∫ vo

−vo

φ∗
n(v)�(v, 0) dv . (34)

The wave function in the x representation is gotten through the inverse Fourier
transformation,

ψn(x) = 1√
2π

∫
e−imvx/h̄φn(v) dv . (35)

Note that the above quantization process can be done in general for the constant
of motion (9) and any case defined by (6).

4. CONCLUSION

For a relativistic particle under a constant force and a dissipative force pro-
portional to the velocity, a local constant of motion has been found, and one has
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outlined the problem to get its Lagrangian and Hamiltonian in general. To quan-
tize this system, Schrödinger quantization approach has been used with this local
constant of motion at first order on the dissipation parameter and using the velocity
representation of the wave function. Using this quantization approach, we have
outlined the dissipative relativistic quantum bouncer problem.

APPENDIX

The function B(v) is given by

B(v) =



mc2

1−β2c2

[
−

√
1 − v2

c2 + βv log
1+

√
1− v2

c2

v/c

]
+ mβc3f1(v)

(1 − β2c2)3/2
if βc < 1

−mcv log

(
2(1 +

√
1 − v2/c2)

v/c

)
+ mc2f2(v)

3
if βc = 1

mc2

1 − β2c2

−
√

1 − v2

c2
+ βv log

1 +
√

1 − v2

c2

v/c


+ mβc3f3(v)

(1 − β2c2)3/2
if βc > 1

(A.1)

where f1, f2 and f2 are defined as

f1(v) = v

∫ arcsin
(

βc+v/c

1+βv

)
dxv

v2
, (α1)

f2(v) =
−1 − v

c
+ v2

c2
+ 3v

c

√
1 − v2

c2
log

(
2(1 +

√
1 − v2/c2)

v/c

)
√

1 − v2/c2
, (α2)

and

f3(v) = v

∫ log
(

ψ(v)
1+βv

)
dv

v2
, (α3)
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where the function ψ is given by (7b). The function C(v) is given by

C(v) =



mc2

1−β2c2

[
v−βc2

c2
√

1− v2

c2

+ β log

(
1+

√
1−v2/c2

v/c

)]
+ mβ3g1(v)

(1 − β2c2)3/2
if βc < 1

−mc

[
log

(
2(1 +

√
1 − v2/c2)

v/c

)
− 1√

1 − v2/c2

]
+ mcg2(v)

3
if βc = 1

mc2

1 − β2c2

 v − βc2

c2
√

1 − v2

c2

+ β log

(
1 +

√
1 − v2/c2

v/c

)
+ mβ3g3(v)

(1 − β2c2)3/2
if βc > 1

(A.2)

where g1, g2 and g3 are defined as

g1(v) = f1(v)

v
+

arcsin
(

βc+v/c

1+βv

)
v

(β1)

g2(v) = g21(v) + g22(v)

(1 − v2/c2)3/2(1 +
√

1 − v2/c2)
, (β2)

and

0g3(v) = f3(v)

v
+ 1

v
log

(
ψ(v)

1 + βv

)
. (β3)

The functions g21 and g22 have been defined as

g21(v) = (−4 − v

c
− 3v2

c2
+ v3

c3
)(1 +

√
1 − v2

c2
) (δ1)

and

g22(v) = 3(1 − v2

c2
)

[
−v2

c2
+ 1 +

√
1 − v2

c2

]
log

(
2(1 +

√
1 − v2/c2)

v/c

)
(δ2)
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